Priority Queues

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time Dependent Priority Queues

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...

متن کامل

Rank-Sensitive Priority Queues

We introduce the rank-sensitive priority queue — a data structure that always knows the minimum element it contains, for which insertion and deletion take O(log(n/r)) time, with n being the number of elements in the structure, and r being the rank of the element being inserted or deleted (r = 1 for the minimum, r = n for the maximum). We show how several elegant implementations of rank-sensitiv...

متن کامل

Practical Concurrent Priority Queues

Priority queues are abstract data structures which store a set of key/value pairs and allow efficient access to the item with the minimal (maximal) key. Such queues are an important element in various areas of computer science such as algorithmics (i.e. Dijkstra’s shortest path algorithm) and operating system (i.e. priority schedulers). The recent trend towards multiprocessor computing requires...

متن کامل

Chromatic Priority Queues

We investigate the problem of implementing a priority queue to be used in a parallel environment, where asynchronous processes have access to a shared memory. Chromatic trees are a generalization of red-black trees appropriate for applications in such an environment, and it turns out that an appropriate priority queue can be obtained via minor modiications of chromatic trees. As opposed to earl...

متن کامل

Fast Meldable Priority Queues

We present priority queues that support the operations MakeQueue, FindMin, Insert and Meld in worst case time O(1) and Delete and DeleteMin in worst case time O(logn). They can be implemented on the pointer machine and require linear space. The time bounds are optimal for all implementations where Meld takes worst case time o(n). To our knowledge this is the first priority queue implementation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Mathematical Statistics

سال: 1960

ISSN: 0003-4851

DOI: 10.1214/aoms/1177705990